INTRODUZIONE E CENNI STORICI

2. VETTORI: Somma e scomposizione di vettori * Prodotto scalare e prodotto vettoriale * Componenti di un vettore * Rappresentazione cartesiana * Derivazione ed integrazione di vettori * Rappresentazione di grandezze fisiche per mezzo di vettori.

MECCANICA
1. GENERALITA': Introduzione allo studio dei fenomeni meccanici * Osservatore e sistemi di riferimento * Definizione di punto materiale e corpo rigido.
4. FORZE IN NATURA: Forza gravitazionale * Forze elastiche * Forze di attrito.
10. OSCILLAZIONI: Moto armonico semplice * Pendolo semplice * Pendolo fisico * Massa sottoposta a forza elastica (Osciillatore armonico smorzato * Oscillatore armonico forzato * Risonanza).

TERMODINAMICA
1. INTRODUZIONE: Punto di vista microscopico e macroscopico * Scopo della termodinamica.
2. TEMPERATURA: Equilibrio termico * Principio zero * Concetto di temperatura *(Misura della temperatura * Termometri * Termometro a gas * Temperatura dei termometri a gas ideale).*
3. SISTEMI TERMODINAMICI: Equilibrio termodinamico * Trasformazioni termodinamiche * Equazione di stato * Sistemi PVT.
4. PRIMO PRINCIPIO DELLA TERMODINAMICA: Lavoro * Trasformazioni quasi-statiche * Lavoro nei sistemi PVT * Lavoro adiabatico ed Energia interna * Primo principio della
termodinamica * Calore * Capacità termiche e calore specifico * Calore latente * Potere calorifico * Caloria * Equivalente meccanico della caloria.
5. PROPRIETÀ TERMICHE DEI GAS: Diagramma PV per una sostanza pura * Equazione di stato di un gas * Energia interna di un gas * Espansione libera di Joule.
6. GAS IDEALI: Definizione di un gas ideale * Capacità termiche molari * Relazione di Mayer Trasformazioni adiabatiche quasistatiche
8. SECONDO PRINCIPIO DELLA TERMODINAMICA: Enunciato di Kelvin-Planck * Enunciato di Clausius * Equivalenza dei due enunciati
11. ENALPIA: definizione di entalpia * entalpia di un gas ideale.

TESTI CONSIGLIATI
1. HALLIDAY, RESNICK & KRANE - Fisica 1 - 4a edizione - C.E.A. Milano.
2. MAZZOLDI, NIGRO, VOCI - FISICA - vol. I - S.E.S. Napoli.
3. ROSATI, Fisica Generale, voi I - C. E.A.
4. SERWAY – Principi di Fisica – Edi SES -
5. TIPLER - Fisica 1 - II edizione - Zanichelli.
6. GETTYS, KELLER, SKOVE, Fisica classica e moderna - McGraw-Hill
7. Peter J. Nolan – Fondamenti di Fisica - Zanichelli
8. ZEMANSKY, ABBOT & VAN NESS - Fondamenti di Termodinamica per ingegneri - parte 1 Zanichelli.
9. CICCACCI, FASANA & QUARTAPELLE - Fisica 1: Problemi d’esame svolti - Progetto Leonardo

AVVERTENZE
2. PROPEDEUTICITA’: Si consiglia vivamente di affrontare lo studio della Fisica e dopo avere acquisito buone nozioni di matematica elementare (Algebra, geometria e Trigonometria) e nozioni fondamentali dei calcolo differenziale ed integrale.
3. ESAMI: L’esame è costituito da una prova scritta e da una prova orale. La prova scritta consiste nella risoluzione di un problema di meccanica e di un problema di termodinamica. Le soluzioni dei problemi, oltre ad essere corrette, devono essere brevemente giustificate e commentate. Sia durante la prova scritta che durante la prova orale, lo Studente deve essere fornito dei libretti universitari.
4. PRENOTAZIONI: Per potere sostenere la prova scritta lo Studente deve prenotarsi presso la Segreteria didattica dell’istituto di Fisica almeno 3 giorni prima della data fissata.
5. RICEVIMENTO STUDENTI: Chiamamenti ed informazioni sul Cor - saranno dati esclusivamente durante le ore di ricevimento.
6. AVVISI: Le date ed il luogo andranno eventuali altri avvisi saranno comunicati esclusivamente tramite affissione all’albo posta nel vano scale al primo piano dell’istituto di Fisica.